Archives for the category: 3D printed prosthetics

April 15, 2014

Carpenter who cut off his fingers makes 'Robohand' with 3-D printer

130520170955-3d-interactive-robohand-horizontal-gallery.jpg Richard van As lost his fingers in a carpentry accident and finds help online. CNN reports.

quotemarksright.jpgAfter days of scouring the Internet he couldn't find anywhere to buy a functional prosthetic finger and he was astonished at the cost of prosthetic hands and limbs which began in the tens of thousands of dollars. But his online surfing paid off as it brought him to an amateur video posted by a mechanical effects artist in Washington State, by the name of Ivan Owen.

Together, the pair developed a mechanical finger for van As, but their partnership has also gone on to benefit countless hand and arm amputees around the globe, through the birth of the company "Robohand." Officially launched in January 2012, Robohand creates affordable mechanical prosthetics through the use of 3D printers. Not only that, but it has made its designs open source, so that anyone with access to such printers can print out fingers, hands and now arms as well. quotesmarksleft.jpg

Read full article. The first Robohand ever created was made for five-year-old Liam, from South Africa (picture above)

emily | 9:06 AM | permalink

March 26, 2014

Neurosurgeons successfully implant 3D printed skull

Screen Shot 2014-03-26 at 10.35.07 PM.png A 22-year-old woman from the Netherlands who suffers from a chronic bone disorder -- which has increased the thickness of her skull from 1.5cm to 5cm, causing reduced eyesight and severe headaches -- has had the top section of her skull removed and replaced with a 3D printed implant. Wired reports.

quotemarksright.jpgThe operation was performed by a team of neurosurgeons at the University Medical Centre Utrecht and the university claims this is this first instance of a successful 3D printed cranium that has not been rejected by the patient.quotesmarksleft.jpg

Read full article.

emily | 11:33 PM | permalink

‘Printing’ your facial feature... for as little as £150

3682306847.jpg An inventor from Yorkshire could be on the verge of revolutionising the prosthetics industry – by using 3D printing techniques to create lifelike ears, eyes and noses. The Yorkshire Post reports.

quotemarksright.jpgThe technology he is employing means there is potential to craft dozens of parts in the space of a single hour.

Mr Fripp, owner of Rotherham-based Fripp Design, says the process is a “game changer”, with some of his products just months away from hitting the market.

He said: “We have hundreds of noses and ears, there really are an infinite number of options for the patient. “The technology will make the prostheses a lot more affordable for a lot more people.”

The traditional method of making a prosthesis begins with a plaster cast of the affected area. A wax mould is then carved from the cast and the replacement body part made in silicone from the mould.

Mr Fripp’s technique sees a scan being taken of a patient’s face so the digital model of the prosthesis can be tweaked before printing to ensure it is a perfect fit.quotesmarksleft.jpg

Read full article

emily | 8:56 AM | permalink

March 12, 2014

Pioneering 3D printing reshapes patient's face in Wales

_73523858_skull.jpg A survivor of a serious motorbike accident has had pioneering surgery to reconstruct his face using a series of 3D printed parts. The BBC reports.

quotemarksright.jpgStephen Power from Cardiff is thought to be one of the first trauma patients in the world to have 3D printing used at every stage of the procedure.

Doctors at Morriston Hospital, Swansea, had to break his cheekbones again before rebuilding his face. Mr Power said the operation had been "life changing".

... In order to try and restore the symmetry of his face, the surgical team used CT scans to create and print a symmetrical 3D model of Mr Power's skull, followed by cutting guides and plates printed to match.

Maxillofacial surgeon Adrian Sugar says the 3D printing took away the guesswork that can be problematic in reconstructive work.

"I think it's incomparable - the results are in a different league from anything we've done before," he said.quotesmarksleft.jpg

Read more.

emily | 11:26 AM | permalink

March 4, 2014

3D printing makes more precise Knee implants

5315488ab3f47.preview-300.jpg A Houston man became one of the first in the nation to have knee replacement surgery with a replica of his old knee last year thanks to a Cypress area surgeon and a 3D printer. YourHoustonNews reports.

quotemarksright.jpgWhile an estimated 600,000 people have knee replacement surgery last year in the United States, only a few surgeons offer 3D printed knee implants.

Usually patients receive off-the-shelf knees, which requires the surrounding bone to be chiseled and shaped to fit the implant. With a customized knee, surgeons can remove 30 percent less bone, said Dr. David Mack, head of Advanced Orthopaedics and Sports Medicine in Cypress.

... A national study group consisting of about 100 patients and eight physicians is showing positive results.

“If you look at knee replacements in general, they have an 80-85 percent success rate,” he said. “One of the major reasons knee implants don’t provide the pain relief they’re designed to provide, has to do with fit. If the implant is too large it tends to cause friction or pain. And if the implant is too small it can cause instability or sense of looseness in the knee. The implant can also wear out prematurely.quotesmarksleft.jpg

Read more.

emily | 9:13 AM | permalink

January 7, 2014

How a TIME Article Led to the Invention of a $100 3D-Printed Artificial Limb

Changing lives thanks to 3D printing. Please watch. [via TIME]

emily | 5:58 PM | permalink

December 11, 2013

3D-printed skull simulates sensations of brain surgery

It's not exactly brain surgery – but it's pretty close. An ultra-realistic 3D-printed skull that recreates the texture of different layers of tissue is allowing students to practise drilling into bone and removing a tumour. New Scientist reports.

quotemarksright.jpgVicknes Waran from the University of Malaya in Kuala Lumpur, Malaysia, and colleagues created the model using the latest generation of 3D printers, which can print plastic in a variety of textures, from rubbery to hard. By tweaking the printer's settings, they mimicked the consistency of skin, bone and membranes to build up the layers inside a skull. To reproduce a jelly-like tumour, plastic was injected into an anatomically accurate cavity created by the printer, based on scans from a patient. It was then coloured red to add realism.

The skull is an improvement over existing models that use a single material because it allows trainees to see, feel and even hear how each type of tissue responds. Patient-specific replicas can simulate different medical conditions, allowing students to rehearse an entire operation ahead of time.quotesmarksleft.jpg

Read more.

emily | 7:21 PM | permalink

November 29, 2013

3D printed prosthetic-eyes

3D-printing-can-produce-up-to-150-prosthetic-eyes-per-hour_dezeen_ban3.jpg British company Fripp Design and Research has developed 3D-printed prosthetic eyes that could be produced much faster than existing handmade versions, reducing the cost by 97 percent. Dezeen reports.

quotemarksright.jpg Fripp Design and Research, which is also working on 3D-printed ears and noses for patients with facial disfigurements, has collaborated with Manchester Metropolitan University to develop ocular prosthetics that are 3D-printed in batches, with intricate coloured details including the iris and blood vessels already included.

Currently, prosthetic eyes are moulded in acrylic and painted by hand to match the patient's eye colour. This process is time-consuming and expensive, whereas producing the eyes using a 3D printer enables up to 150 eyes to be made in an hour.

All of the components are printed from powder in full colour using a Z-Corp 510 machine before the resulting form is encased in resin. Compared to the existing handmade production method, this helps to remove any variation in quality and significantly reduces the cost of each eye, which is currently up to £3000 in the UK.

"Because each one is produced from the same system the consistency is the same and the cost is drastically reduced to approximately £100," said Fripp.quotesmarksleft.jpg

Read more.

emily | 2:38 PM | permalink

November 10, 2013

Faces to order: how 3D-printing is revolutionising prosthetics

photo1.gif

Sheffield-based Fripp Design has developed a system for fast and low-cost manufacture of facial prostheses. The Guardian reports.

quotemarksright.jpgThe University of Sheffield company have developed a process in which the patient's face is 3D-scanned, avoiding the need for a sometimes painful and invasive impression, and the specific contours then added to a digital model of the new prosthetic part, to create a perfect fit every time. The parts themselves can be scanned from other people or replicated from the patient's own physiognomy – one ear can be scanned and mirrored to replicate another.

"We have a whole bank of different noses and ears now," says industrial designer Tom Fripp. "One lady had always admired her friend's nose, so we made her one just like it."

The parts are 3D-printed in full colour in starch powder, forming a lightweight model that is then vacuum-infiltrated with medical grade silicone, binding it together and providing durable flexibility. The first prosthesis costs around the same as the traditional process, but once the digital model has been made, successive parts can be produced for around £150.

"Prostheses do tend to wear out and degrade after exposure to water, sun and daily wear and tear," says Fripp. "But 3D-printed prostheses allow for different options – for example if you get a sun-tan, you can just email us about your new skintone and we'll print you a new one."

The target market for which the project was developed, he says, is the developing world, where prosthetic skills are often in short supply. The main barrier at present is the prohibitive cost of 3D-scanning technology, but with prices coming down, the availability of low-cost, individually-customised prostheses could soon be a reality.quotesmarksleft.jpg

Read more.

emily | 9:21 AM | permalink

3 ways 3-D printing could revolutionize healthcare

3-D printing has lately gained momentum as a (cheap, quick) manufacturing endpoint in and of itself. “The biggest advantage of 3D printing is that everything is customizable,” said Markus Fromherz, Xerox’s chief innovation officer in healthcare. Quartz reports.

quotemarksright.jpg There are three categories of healthcare where 3-D printing could be applied, or is already, Markus Fromherz, Xerox’s chief innovation officer in healthcare. said: for body parts or prosthetics (sometimes called “scaffolding”), medical devices, and human tissues.

1. Scaffolding

Printing technology has already revolutionized joint replacements, Fromherz said. “Knee replacement is a very common procedure, there are six or so different types of knees that doctors use,” he said, adding, “with each one you need to cut the bone differently.”

But with 3-D printing, doctors aren’t limited to those six knees. They can design one specific to each patient.

Patients with custom knees don’t have to lose extra inches of bone, instead the surgeon can cut at the optimal point, which could lead to faster recovery times and better functionality. Strong, flexible new knee joints mimicking bone and cartilage can now be printed with nylon. These surgeries are available at top-tier medical facilities like the Mayo Clinic.

2. Medical devices

Most hearing aids are already 3-D printed, since these have always been customized to the user, and scanning, modeling, and printing saves time over casting a handmade mold of the inner ear. What used to take a week now takes less than a day. Similarly, making crowns and dental implants–once a two week process–can happen while the patient reads a magazine in the waiting room.

3. Human tissues

Scientists have printed artificial meat tissue suitable for eating, but making tissues and organs that maintain life has been much harder. So far, printed bits of functional liver tissue in Petri dishes could be viable for testing drugs, and larger models have been useful for surgeons to practice technique. “Printing functional human tissue will be a game changer, but it’s far out,” Fromherz said.

... It still takes at least 30 minutes to print anything. The technology may one day be most useful at military field hospitals or at the scene of an accident, where immediately creating splints, body parts or devices could save lives, but it’s not quick enough yet to be implemented. “There will be 3-D printers, I’m sure, in every home and hospital in the future,” Fromherz said. “But right now the tech isn’t fast enough.quotesmarksleft.jpg

Read more.

emily | 8:22 AM | permalink

October 29, 2013

Boy gets prosthetic hand made by 3-D printer

Two years ago, Paul McCarthy began searching for an inexpensive yet functional prosthetic hand for his son Leon, who was born without fingers on one of his hands. McCarthy came across a video online with free detailed instruction on how to use a 3-D printer to make a prosthetic hand for his son. CBS Evening News reports.

emily | 5:09 PM | permalink

August 12, 2013

China. Hospital uses 3D printed orthopedic implants

eca86bd9e3d2136b1f5c1e.jpg

Peking University Third Hospital, a top hospital in China, recently announced that its Orthopedics Department has been using enhanced implants produced by a 3-D printer in a clinical trial, with promising results. China Daily reports.

quotemarksright.jpgWe started clinical trials on 3-D produced implants late last year, and now we have used dozens of such implants in more than 50 patients," said Liu Zhongjun, director with the department."All the patients recover very well. Nobody seems to have any undesirable side effects or adverse reaction.quotesmarksleft.jpg

Read full article.

emily | 9:37 AM | permalink

August 1, 2013

Doctors in Belgium use Mcor paper-based three-dimensional printing to reduce maxillofacial surgical time dramatically

TMD0613_pg30.jpg Time is critical when a patient is undergoing surgery. The longer the patient’s internal tissue is exposed, the greater the risk. When a patient can be quickly closed up and begin recovery, chances are greater for a healthy recovery. [via Today's Medical Development]

quotemarksright.jpgThese concerns are on the minds of maxillofacial surgeons at the Cliniques universitaires saint Luc, Université catholique de Louvain (UCL), Louvain-La-Neuve, Belgium, who often need to reconstruct bones in a patient’s skull, such as a jaw ravaged by cancer or an eye socket crushed in a car accident.

The surgeons employ paper 3D printing technology from Mcor Technologies, Duneer, Ireland, to recoup hours from traditional surgical procedures. Working from the digitally scanned contours of patients’ bones, doctors push a button to create full-size 3D physical models they can use as surgical guides.

Since the model is a facsimile of the patient’s actual physiology, surgeons can use it to shape metal inserts that fit precisely along a patient’s residual bone. The insert might be a plate that supports a damaged mandible or a titanium mesh for reconstructing a damaged eye socket. Without 3D physical models to work from, it would force surgeons to rely on time-consuming trial and error to shape the metal implants and risk potential tissue damage.

“With each procedure, we easily win an hour in the operating room, and that is a major benefit for the patient,” says Professor Raphael Olszewski, a surgeon and head of the university’s oral and maxillofacial surgery research lab (OMFS Lab, UCL). “We open the patient up, slide in the device, check the fit, and start the patient’s recovery.quotesmarksleft.jpg

Read more.

emily | 3:25 PM | permalink

June 30, 2013

3D printed arm cast: super light and shower friendly

700x0_p17tg3clnhgh11jt71jrd1tk7r3u7.jpg

This cortex cast utilizes the x-ray and 3d scan of a patient with a fracture and generates a 3d model in relation to the point of fracture. Its fully ventilated, super light, shower friendly, hygienic, recyclable and stylish.

There is down side according to Michael Interbartolom: the 3D printing of the cast takes around three hours whereas a plaster cast is three to nine minutes, but requires 24-72 hours to be fully set.

emily | 9:40 AM | permalink

June 26, 2013

Disabled duck gets new foot thanks to 3D printing

duck_4.jpg Born with a backwards foot, a duck called Buttercup could only walk in great pain -- until his owner came up with a novel idea for a flexible prosthetic. C/net reports.

quotemarksright.jpgAfter Buttercup had his foot amputated in February, 3D printing company NovaCopy agreed to donate its services. Using photos of the left foot of Buttercup's sister Minnie, they designed a brand new left foot for the maimed duck.

Because the foot needs to be flexible, the usual plastics used in 3D printing aren't viable. Instead, NovaCopy printed a mould, which will be used to cast a silicone foot for the lucky duck, creating several iterations of the design to come up with the perfect one. It will be attached to his foot via a silicone sheath.quotesmarksleft.jpg

Read full article.

emily | 1:29 PM | permalink

June 13, 2013

One-of-a-kind 3D-printed prosthetics bring beauty to amputees

fairing_1.jpg

A company in San Francisco called Bespoke Innovations creates custom 3D-printed covers (or "fairings") for prosthetics limbs.

[via Crave]

Previously: - Custom designed coverings for prosthetic legs built using 3D printer

emily | 9:04 PM | permalink

May 23, 2013

Open-source prosthetic hand can be made with a MakerBot 3D printer for $150

robohand-1.jpg Current prosthetic technology is highly complicated and expensive, and can cost up to $10,000 for a basic prosthetic finger. Imagine if instead of having to rely on complex and costly products and equipment, we could simply print out a full prosthetic device from the convenience of home.

Robohand is a mechanical 3D-printed hand that can be created using a MakerBot 3D printer.

The design files and assembly instructions for Robohand can be found on Thingiverse.

Read full article in PSFK.

emily | 6:25 PM | permalink

May 20, 2013

The Next Frontier For 3-D Printing: Helping The Disabled

Screen Shot 2013-05-20 at 7.01.59 PM.png For Enabled By Design, a nonprofit specializing in “good design [that] can support people to live as independently as possible,” 3-D printing is a game-changer. Instead of buying mass-produced products, people with disabilities can manufacture exactly what they need to suit their individual needs. FastCoDesign reports.

quotemarksright.jpgLate last year, the organization held a designathon in London, below are some of the projects that came out of it:

-- For Paul Carter who co-directs a television production company , born without lower arms and legs, and is a heavy coffee drinker, using a 3-D printer, competitors created a prototype water-heating device that could be operated without hands and which could be manipulated using upper arms.

-- fingertip cacti are tabletop dining utensils that slip on users’ fingers. The cacti are designed for eaters with motor impairments and make handling food significantly easier. In the case of the finger cacti, a 3-D printer was used to quickly produce prototypes that users could test out at the designathon.

-- Playsettings, which are spill-resistant tea cups, were fabricated on 3-D printers and have already made it to market.quotesmarksleft.jpg

Read full article.

emily | 6:50 PM | permalink

April 23, 2013

The 3D printed future of medicine is here today

inside-3D-printing-dvice-top.jpg The "Inside 3D printing" expo, a two-day event held in New York showcased everything from the latest 3D printers and scanners to the ever-broadening spectrum of printing filaments. But hidden away in a conference room were a small array of 3D printed medical apparatuses that are already changing the face of surgery, without all the fanfare of a skull replacement. Dvice reports.

quotemarksright.jpgAtop a simple table sit a handful of printed medical models, joints, surgical guides and a few porous, metal semi-spheres. These little marvels, strangely enough, are some of medical 3D printing's greatest success stories to date.

... 3D printing allows for the cheap, easy creation of complex structures, like a sphere with a solid interior and a porous exterior. The solid interior helps the new hip joint sit and function properly, the necessity of any replacement joint.

The porous exterior does something even more. It encourages your existing pelvic bone to grow into and through its Swiss cheese-like holes. And when that happens, something is achieved that is practically unheard of in the world of prosthetics: the replacement hip gets stronger — as if it were a real, healing part of your body. Check out the whole array of under-sung 3D printed medical tools in Dvice's gallery. quotesmarksleft.jpg

Read full article.

emily | 6:12 PM | permalink

April 18, 2013

Mayo Clinic uses 3D Printing to Create Customized Artificial Hip

Joint replacements have been around for a long time. Most people with conditions such as osteoarthritis can expect good results if they have one. But what about those who have complicated cases or unusual deformities that a standard replacement can't fix? In the past that's meant few options. Now, doctors at Mayo Clinic are using 3D printers to enable customized joint replacement surgeries. Many patients, who were out of luck, can now have a successful surgery and better quality of life.

[via 3D Printer-World]

emily | 10:02 PM | permalink

April 11, 2013

Brian Federal's short film on the work of industrial designer Scott Summit on artificial limbs

A short film produced by Filmmaker Brian Federal on the work of Scott Summit, demonstrating how 3D Printing and digital scanning can be used to greatly improve Prosthetic design.

Coming soon: "3D Printing Revolution", a feature length Documentary film on 3D Printing with interviews of the major players in the market.

Related:

-- TEDxCambridge: Scott Summit: Beautiful artificial limbs

-- Scott Summit's Custom designed coverings for prosthetic legs built using 3D printer

emily | 8:17 AM | permalink

April 4, 2013

Curing Europe's foot problems with 3D printing

Screen Shot 2013-04-04 at 6.36.00 PM.png 200 million Europeans suffer from disabling foot and ankle problems. Splints and orthotic insoles are normally made using the traditional manufacturing processes; impression casts, hand crafting etc. These are time consuming, expensive and make repeat prescriptions very difficult to reproduce. prsnlz.me reports.

quotemarksright.jpgA-Footprint want to change all that with the help of 3D printing. The European study group, headed up by Glasgow Caledonian University’s Professor Jim Woodburn, received EC backing to the tune of €3.7million ($5.6million) to develop a process to speed up and improve the customisation of orthoses. quotesmarksleft.jpg

Read more.

Related: - 3D Printed shoes in Kenya, to alleviate jigger sufferers

emily | 6:25 PM | permalink

March 31, 2013

Doctors use 3D printer to rebuild cancer victim's face

3d-printer.jpg

Surgeons have employed cutting-edge three-dimensional printing technology to create a prosthetic face for Mr Moger, 60, after cancer surgery removed almost the entire left side of his face — in what is thought to be the first procedure of its kind in Britain.

[The Independent via @DoYou3D]

Related: - How doctors printed my new face (The Telegraph)

emily | 12:45 PM | permalink

March 8, 2013

3D-Printed Skull Implant Ready for Operation

osteofab-cranial-device.jpegLiveScience reports on how 3D printing technology has helped replace 75 percent of a patient's skull with the approval of U.S. regulators.

quotemarksright.jpgThe company announced it had received approval from the U.S. Food and Drug Administration for its skull implant on Feb. 18 — a decision that led to the first U.S. surgical operation on March 4.

3D printing's advantage comes from taking the digitally scanned model of a patient's skull and "printing" out a matching 3D object layer by layer. The precise manufacturing technique can even make tiny surface or edge details on the replacement part that encourage the growth of cells and allow bone to attach more easily.quotesmarksleft.jpg

Read full article.

emily | 7:47 AM | permalink

February 9, 2013

Custom designed coverings for prosthetic legs built using 3D printer

Screen Shot 2013-02-09 at 8.31.27 AM.png

A designer San Francisco is creating coverings for prosthetic legs using 3D scanning to capture the unique leg shape, offering customizations that have never before been possible. The Telegraph reports.

quotemarksright.jpgScott Summit came up with a new type of cover for prosthetic legs called "fairings." Recreating a unique leg shape by scanning a client's existing leg, the fairings are then built using a 3D printer.

They not only return the lost contour of the body, but also allow for individual design and style, using different patterns and graphics.

The technology may eventually make these kinds of prosthetics more accessible.quotesmarksleft.jpg

Read full article, watch video demo and read case studies on Summit's website.

emily | 8:28 AM | permalink

January 30, 2013

Inexpensive home-brewed prostheses created using 3D printers

shorthandedheader.jpg

Two low-cost, printable prostheses highlight the potential impact 3D printing could have on the quality of life for millions as the technology becomes more accessible around the world. Gizmag reports.

-- A complete set of mechanical prosthetic fingers - The design is free on Thingiverse with a public-domain license:

quotemarksright.jpg The mechanical fingers were made using a Replicator 2 3D printer and are attached to a brace that is worn over the hand. The fingers are controlled via cables and return bungees, which, while relatively low-tech, provide a functional and comfortable to wear prosthesis. The design can also be scaled for other individuals using Makerware software.quotesmarksleft.jpg

-- A prosthetic hand that could be cheaply created on a 3-D printer for amputees in developing countries:

quotemarksright.jpgManu Print has a unique design that allows users to close and open each finger individually by applying only one tensile force. The hand is purely mechanical and has no electronic parts. Inventor Eric Ronning, a mechanical engineering sophomore, could make the hand's design available on open-source 3-D printing sites such as Thingiverse, where it could be easily replicated for about $20.quotesmarksleft.jpg

Read full article.

emily | 10:03 AM | permalink

December 11, 2012

3D Printed shoes in Kenya, to alleviate jigger sufferers

Roy Ombatti - Nairobi University from william hoyle on Vimeo.

Innovation Africa reports on 3D Printing in an article entitled Imaginarium | Tapping into 3D Printing. via @jranck.

One project described here caught my eye. Called Happy Feet, it was one of the contestants in The 3D 4D Challence which took place in London last October. The slogan was “Relieving Poverty Encouraging Innovation.”

quotemarksright.jpgAmong the contestants were Roy Ombatti and Harris Nyali from University of Nairobi’s Fablab. Their project, Happy Feet, aims to solve the jigger menace in Kenya by using 3d printing to make customised shoes for people suffering from Jigger. Thus a right shoe can be made differently than a left, depending on the level of infestation.

Jiggers are tiny parasites that resemble fleas. They embed themselves in the feet, hands or other exposed body parts of animals, including humans. Serious infestations may lead to severe inflammation leading to loss of toenails, auto amputation of digits, and death may also occur. The risk of secondary infection, such as tetanus, is also high. Jiggers live in dusty conditions and other unhygienic environments, and are generally associated with poverty-stricken populations.

The shoes would be manufactured from reused plastic and would also be recyclable once they are worn out. Apart from the potential help that this project could bring to people affected by the jigger infestation, it can also provide employment for people. quotesmarksleft.jpg

The Winner of the 3D 4D Challenge was Washington Open Object Fabricators (WOOF). WOOF’s winning project will enable waste plastic to be used as filament for 3D printing machines, to create new products.

emily | 3:40 PM | permalink

December 7, 2012

Printing a Medical Revolution

more_1_2.jpg A great article by Russ Banham explaining how 3D printing works for dental fabrication, tailoring prosthetic limbs and "bioprinting"—the production of human organs for transplant.

quotemarksright.jpgDental Fabrication

With dental fabrication, a digitized, intra-oral scan is made of a patient's teeth, uploaded into a computer, and then e-mailed to a dental lab that prints out a new porcelain bridge. The new process means patients no longer have to endure uncomfortable, foul-tasting, and less accurate oral impressions using trays and molding materials. ...

Prosthetic Limbs

"The way most artificial limbs are made hasn't changed much over the years—you take a piece of foam, shave it into a rough approximate of a person's leg, then make a mold and stamp it out," says Scott Summit, an industrial designer and co-founder of Bespoke Innovations, which uses 3D Printing technology to produce customized prosthetics. "We wanted to design and produce something unique and far more personal—to bring greater humanity to people who've experienced a traumatic or congenital limb loss."

Bespoke Innovations manufactures customized prosthetic limb coverings, or "fairings," that perfectly mirror the sculptural symmetry and function of the wearer's remaining limb. ...

Organ Replacement

Perhaps the most disruptive (in a good way) application of 3D Printing in the medical world is "bioprinting"—the production of human organs for transplant.

The technology involves the creation of replacement tissues and organs that are printed layer-by-layer into a three-dimensional structure. The parts are made from the organ recipient's own genetic matter, and precisely match the tissue or organ they replace.

Since these printed organs or tissue are made from the patient's own cells—rather than those of a donated heart or liver, for example—there's little risk of an immune response, which lessens the need for debilitating immunosuppressive drugs.

The breakthroughs in bioprinting have been increasing in frequency. Like the race to the moon in an earlier era, the goal of bioprinting appeared lofty but attainable, and the first commercial 3D bioprinter was developed in 2009 by a bioprinting company called Organovo. ...

The Business of Bioprinting

Researchers from publicly traded Organovo as well as those at universities like Wake Forest, Stanford, and Harvard are collecting data right now proving the viability of 3D bioprinting. Once enough data is collected, the clinical trials process will begin, and at some point in the future, the FDA will rule on whether or not this "therapeutic technology" gets the green light. ... quotesmarksleft.jpg

Read full article. via @3DPrint_news

emily | 8:25 AM | permalink

December 1, 2012

3D printing a new ear

Screen Shot 2012-12-01 at 7.20.23 PM.png

Ernst Jan Bos, a Dutch medical researcher at VUMC, Amsterdam is using a Ultimaker 3D printer to print 'scaffold' upon which new human body parts may one day be grown. As a specialist in plastic surgery he hopes this technology could be used for facial reconstruction of burn patient. 3ders.org reports.

quotemarksright.jpgUsing a 3D scanner they scan the body part of patient, then send the file to a Ultimaker 3D printer for printing, afterwards they use it as the basis for creating molds for growing the ear.quotesmarksleft.jpg

Read full article.

Related: - 3D manufacturing - printing a new nose

emily | 7:19 PM | permalink

November 22, 2012

Cartilage made using hybrid 3D printer could help treat joint diseases and sporting injuries

_64304831_cartilageprinter-1.gif Researchers have developed a way to "print" cartilage that could help treat joint diseases and sporting injuries. The BBC reports.

quotemarksright.jpgThey say that the new material is more robust and hardwearing than previous efforts to create artificial cartilage.

A traditional ink-jet printer combined with a specialised spinning-machine is used to make it.

It could lead to bespoke cartilage created for individual patients. But one expert warned it was too early to be confident it would ever be used.

The study was published in the Institute of Physic's journal Biofabrication.quotesmarksleft.jpg

Read full article.

emily | 4:29 PM | permalink

November 13, 2012

A new concept for a constantly adaptable prosthetic limb might use 3-D printing

1680871-inline-beth-project-inlinejpb.jpeg Most amputees go through a lot of prosthetics in a lifetime. This can be expensive, especially in the developing world. The Beth Project aims to change that by making a prosthetic that can change along with the human body. FastCompany reports.

quotemarksright.jpgThe product is aimed particularly at the developing world, where up to 30 million people require prosthetics, according to the World Health Organization.

The issue is not so much about cost--cheap prosthetics exist, and many used ones are donated--but the need for specialists to adjust or replace the sockets. WHO says 180,000 trained staff are needed, and that there’s a current shortage of about 40,000. Outfitting an average prosthetist’s clinic, complete with grinders and vacuum formers, costs $70,000, according to Hill, and that’s before you hire personnel to run it.

"Initially, we were thinking about making a cheaper socket, maybe using 3-D printing, or some other advanced manufacturing technique," Hill says. "But then we found out the real problem was the shortage of trained care. The 40,000 figure really jumped out at us.quotesmarksleft.jpg

Read full article. Watch video.

emily | 8:39 AM | permalink

November 7, 2012

New At The Dentist: 3D Printing 'Dental Crowns While You Wait'

image5A1.jpg A new system is being used by a handful of dentists to scan patients’ teeth and create crowns for them while they wait. A process that normally takes two weeks, now only takes an hour. Singularity Hub reports.

quotemarksright.jpgInstead of making a mold and sending it to a lab for scanning, dentists are now using a small camera to scan the misshapen teeth directly. The digitized scan is then sent to an on-site milling machine that carves the crown from a block of porcelain – in about an hour. After about 15 minutes of preparation the crown is ready to be implanted. No need to walk around for two weeks, waiting, with a temporary filling.quotesmarksleft.jpg

Read full article.

Related articles on 3D printing and the Dental sector.

emily | 4:55 PM | permalink

November 6, 2012

3D manufacturing - printing a new nose

wtp040628.jpeg Penny Bailey explores a Wellcome Trust-supported project that is changing the way facial prosthetics are made.

quotemarksright.jpg... At the University of Sheffield, a team of researchers exploring biomaterials and implants became convinced there must be a way of harnessing 21st-century digital 3D technologies to make the process easier and more comfortable for patients.

Creating fleshlike prostheses, as opposed to porcelain teeth or crowns, posed a unique set of challenges. The material used would have to be strong, flexible and biocompatible (unlikely to trigger a toxic or allergic reaction when inserted into human skin). The colour would have to match the patient's specific skin tone exactly, and the whole prosthesis would need to blend as invisibly as possible into the surrounding face.

Three years on, Fripp Design and Research have come up with a reliable process that got the thumbs-up from their first client (who wishes to remain anonymous), who had her nose removed because of nasal cancer in 2002. quotesmarksleft.jpg

Read full procedure.

emily | 5:17 PM | permalink

September 28, 2012

3D printing – Changing the medical world

Patient-specific cases require entirely unique parts and apparatuses to be manufactured, and 3D printing is pretty reliable when it comes down to create accurate pieces. stuffmaker reports.

quotemarksright.jpgJaw Implants

In Belgium, Surgeons replaced the infected lower jawbone of an 83-year-old woman with a customized jawbone which would fit the patient’s existing bone structure, nerves and muscles.

Exoskeleton

Emma Lavelle suffers from arthrogryposis multiplex congenital (AMC), a condition which causes contracted joints and muscle weakness. ... Through a 3D printer and ABS plastic, Emma was given an entirely unique apparatus which helps her to move her arms.

Prosthetic Limbs

Through 3D printing, doctors and engineers have introduced entirely unique and stylish prosthetic limb.quotesmarksleft.jpg

Read full article and view images.

emily | 8:42 AM | permalink

August 3, 2012

3D Printing - the future of pediatric prosthetics

wrex_1.png Thanks to a tiny exoskeleton that was made possible by 3D printing (video), a toddler with a rare congenital disorder has been given the gift of movement. The Huffington Post reports.

quotemarksright.jpg... With the help of 3D printers, also known as additive manufacturing, they were able to create a lightweight -- and customizable -- working prosthetic for Emma.

Lavelle said the mini-exoskeleton has changed her daughter's life.quotesmarksleft.jpg

Now the toddler, who calls her prosthetic her "magic arms," can play and eat independently. Thanks to its customizability and ease of manufacturing, 3D printing is an exciting development for pediatric prosthetics, according to Core77.

quotemarksright.jpgThe custom exoskeletons are printed in ABS plastic and attached to a plastic vest. Because of the ease of manufacturing, the exoskeleton can grow with the child which makes 3D printing especially exciting for those working in pediatric care.quotesmarksleft.jpg

Read full article.

emily | 9:48 PM | permalink

November 7, 2011

TEDxCambridge: Scott Summit: Beautiful artificial limbs

Prosthetics can’t replicate the look and feel of lost limbs but they can carry a lot of personality. At TEDxCambridge, Scott Summit shows 3D-printed, individually designed prosthetic legs that are unabashedly artificial and completely personal -- from macho to fabulous.

emily | 10:22 PM | permalink